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Introduction 
 

 The analysis of the data, sensu BOUROUCHE & SAPORTA (1980), groups numerous and very 

different methods of statistical analysis. We distinguish two main approaches: automatic classification, which 

consists in classifying statistical units and variables using previously established algorithms, and factor 

analysis, which uses the properties of Euclidean vector spaces to describe individuals and variables 

(FOUCARD, 1982). According to PALM (1993), factor analysis methods are fundamental tools for 

analyzing data tables that have no particular structure. They have essentially a descriptive purpose by 

condensing the information contained in a table, often consisting of a large number of rows and columns, 

into a few two-dimensional graphical representations, accompanied by tables containing the numerical values 

of characteristics intended to help the user during the interpretation. 

 

 These analytical techniques therefore seem well adapted to the analysis of the vegetation relevé tables. 

They have been used for several decades in the study of vegetation and are referred to as "ordination". Strictly 

speaking, ordination seeks to place vegetation in relation to one or more environmental gradients associated 

with the axes of analysis (GOODALL, 1954). It starts from the concept that vegetation is a continuum. It 

consists in placing each relevé in relation to one or more axes in such a way that its relative position, with 

respect to the axes, provides maximum information about its composition. In ordination techniques, the 

synthetic approach is not always considered as an objective in itself, but becomes a tool to put the floristic 

data in relation with the environmental factors (or others) likely to affect the composition of the vegetation 

(GREIG-SMITH, 1964). Ordination, following WHITTAKER (1973), is generally considered as a technique 
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of indirect gradient analysis; in this respect the author wrote: "Gradient analysis studies the vegetation in 

terms of gradients (or more or less continuous variations) of the environment, specific populations and 

communities". The arrangement of samples according to environmental gradients as the basis of the analysis 

is called ordination. The ordination is either direct (arrangement of the samples according to their position 

along one or more environmental gradients) or indirect (from the comparison of the samples, and after 

elaborate calculations, the samples are arranged along abstract or directions of community variation). These 

abstract axes may or may not correspond to environmental gradients. A gradient in the composition of 

vegetation can be characterized by the amount of turnover from one end to the other, which WHITTAKER 

(1967) called "diversity beta". According to PALMER (available at:  

http://ordination.okstate.edu/glossary.htm), beta diversity is a measure of how different samples are from 

each other and / or how apart there are on gradients of species. Alternatively, it is a measure of the length of 

an ecological gradient or an ordination axis. An axis or gradient with high beta diversity has completely 

different species compositions (i.e. share no species) at opposite ends. On the contrary, an axis or gradient 

with low beta diversity has specific compositions quite similar at its ends. 

 According to GAUCH (1982b), the data of a sample-by-species matrix can be conceptualized as a 

species space in which the species are axes of multidimensional space and the samples are points located by 

their abundances for each species. Samples with similar species composition occupy nearby positions in 

species space. There is a converse samples space in which samples are axes and species are points placed 

along the axes according to the species importance in each sample. A dissimilarity matrix likewise may be 

conceived geometrically. Samples dissimilarity space uses sample dissimilarities as axes and samples as 

points. The corresponding species dissimilarity space uses species dissimilarities as axes and species as 

points. The fifth and final conceptual space is ecological space, having environmental gradients as axes. 

Species space is defined by a large number of dimensions (one per species). The sample space can be easily 

reduced in its number of dimensions as the species of a table often have more or less redundant dispersions. 

In contrast, the ecological space is represented by a small number of dimensions. Ecological space is the 

expected result of ordination.  

 

Ordination, in its broad sense, has three objectives (GAUCH, 1982b): (1) summarizing community 

data, (2) relating community variation to environmental gradients and (3) understanding community 

structure. The classical analysis involves two steps: (1) producing a synthesis of the structure of the 

community, bringing it back to a space typically comprising one to three dimensions; (2) compare the 

structure thus revealed with the information available on the environment.  
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 However, according to AUSTIN (1976), the properties of indirect ordination to organize and allow the 

interpretation of plant communities in relation to environmental gradients are disrupted by the nonlinearity 

of vegetation / environment relations. 

The concept of ordination is also developed by WILDI (2013), in relation with several multivariate 

analyse techniques. The notions of arch effect, gradient and non-linearity in the response of vegetation to 

environmental factors dominate the author’s scientific thinking. In chapter 6, we explain that those notions 

are false problems. 

 

 Factorial analysis in the statistical sense and ordination therefore have very different conceptual bases 

since factor analysis, in a spirit of data analysis, has no preconceived idea as to the meaning of the axes 

resulting from the analysis. The manner to exploit the results is greatly changed. 

 

 Several multivariate analysis techniques exist for both direct constrained ordination and indirect 

gradient analysis. 

 

 Some confusion in the use of the techniques presented comes from the fact that the same techniques are 

used either as data analysis or as an ordination technique. Through the presentation of examples, we try to 

show the respective contribution of each of the two ways of using these techniques. If ordination is very often 

used as an indirect gradient analysis technique, the reader will soon understand that we favor a much more 

statistical approach. We use factor analysis as one of the tools leading to a data analysis as extensive as 

possible. We caution the reader against the automatic and unthinking use of statistical techniques, often and 

probably unconsciously used to reinforce preconceived notions of vegetation or species-environment 

relationships. The softwares are numerous, easily accessible and too often misused. 

 

 In this chapter, we succinctly present the most common factorial and ordination techniques. The 

applications are described in the following chapters. A few brief conclusions are finally drawn. 

The main techniques of factor analysis and ordination 
 

 Our intention is not to review all the methods developed since the 1950s but to present the main ones, 

to show the spirit in which they were used and above all to make us think about how to use them from now 

on. 

 We begin by recalling some basic notions of factor analysis, while advising readers to learn more about 

the subject. 
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 From a historical point of view, let us simply mention the technique called "weighted average ordination 

(WA)" illustrated by WHITTAKER (1960). A coordinate is calculated for each relevé, based on the species 

composition and the weighting assigned to each species. It is effective if there is a predominantly simple 

gradient and if the distribution of species along an environmental or other gradient is known (e.g. position of 

a species along a pioneer-climacic gradient). With DEL MORAL & WATSON (1978), the distribution of 

species along a gradient is analysed by a reciprocal averaging ordination. WA was also used by OLSVIG 

(1979). This technique can be used with the "scores" attributed by ELLENBERG (1974) to many species 

(light figure, temperature figure, continentality figure, moisture figure, pH figure, nitrogen figure, salt 

content). However, these data should be handled with great caution (WAMELINK et al., 2002). 

 

 The techniques presented now all belong to multivariate analysis techniques. 

 

Techniques of factor analysis 
 

 This paragraph is devoted to factor analysis techniques. Both techniques are based on matrix 

computation. Most of the elements of this paragraph are taken from PALM (1993). 

 Let a matrix X of dimensions n x p, such that p <= n, containing arbitrary numbers. Consider first the 

square matrix X'X, of dimensions p x p and of rank r (r <= p). This matrix admits r positive eigenvalues: 

 λ1  ≥  λ2   ≥ … λr , 

 to which are associated r eigenvectors u1, u2, ..., ur. 

 Consider now the square matrix XX', of dimensions n x n. This matrix is also of rank r and has r positive 

eigenvalues: 

1  ≥  2   ≥ … r , 

 with which r are eigenvectors v1, v2, ..., vr.. 

 The eigenvectors have an arbitrary sign related to the algorithm of calculation used and the sign of all 

the elements of an eigenvector can be changed. 

 The graphical representation of the results often plays an important role in the interpretation of the 

results. Consider that one represents the matrix X by n line vectors in the space of the p columns or by p 

vectors-columns in the space of the n lines. From a geometrical point of view, this corresponds to the 

replacement of the space with p (or n) dimensions by a q-dimensional subspace and considering that the n 

(or p) points lie exactly in this space. The quality of this approximation is given by the ratio: 


==

r

k

k

q

k

k

11

   



Statistical analysis of vegetation data 2024 

 

 6 

which measures the ratio between the sum of the squares of the distances of the projected points in the q-

dimensional space and the sum of the squares of the distances of points in the space at p (or n) dimensions. 

However, this report gives only a general idea of the quality of representation for all the points, and there 

may be important differences from one point to another, for example, a point which may be very close of the 

q-dimensional subspace and the other on the contrary being able to be further away from this subspace. To 

calculate the quality of the representation of a given point, one calculates, for example, the ratio between the 

square of the distance at the origin of the projection of this point in the q-dimensional subspace and the square 

of the distance at the origin of this point in the space with p or with n dimensions. The quality of the 

approximation of a point by a given axis in fact measures the importance of the angle formed by the segment 

linking the origin of the axes with the given point and the projection of this segment on the axis in question. 

More precisely, this is the square of the cosine of this angle. A similar geometric interpretation is given to 

the quality of the approximation of a point by a set of axes: this is the square of the cosine of the angle formed 

by the segment connecting the origin of the axes to the given point and the projection of this segment in the 

space of the considered axes. This value is, moreover, equal to the sum of the squares of the cosines of the 

projection on each of the axes. 

 

 A schematic representation of the quality of the approximations is given, in the case of two axes, in 

figure 1: the quality of the approximation of the point P by the axis 1 is cos21; the quality of the 

approximation of this point by the axis 2 is equal to cos22 and the quality of the approximation of the point 

P by the plane formed by the axes 1 and 2 is equal to: 

cos2 = cos21 + cos22. 

 

 
Figure 1. Quality of the approximation of a point by an axis or a plane (P1 = projection of the point P on the 

axis 1, P2 = projection of the point P on the axis 2, P12 = projection of the point P on the plane formed by the 

axes 1 and 2). Redrawn from PALM (1993). 
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 The quality of the approximation of a point is often called "square cosine", because of the geometric 

interpretation that has just been given, or "contribution of an axis to the explanation of a point" or "relative 

contribution of an axis to the position of a point". In the examples, we will retain "relative contribution". 

Factor analysis s.s. (FA) 
 

The main elements of the summary of the article by DAGNELIE (1973) are reproduced here. 

 

 Factor analysis consists of a set of methods developed in experimental psychology and used mainly in 

the statistical interpretation of the results of psychological tests. The main notions of factor analysis are 

introduced from a simple example borrowed from the psychological field: the results of three tests (problems 

of reasoning, problems of arithmetic and addition calculations), to which different people can be subjected, 

are related to two basic abilities of these people (reasonableness and numeracy). In such a situation, the aim 

is to explain the correlations observed between the test results, highlighting various underlying fundamental 

attitudes and identifying as far as possible these abilities. 

 

 The transposition of the factor analysis into phytosociology is carried out by considering that plant 

species take the place of tests, that vegetation relevés replace people and that ecological factors are substituted 

for fundamental skills. From the observed correlations between species, the objective is to highlight and 

identify as much as possible the main underlying ecological factors. Alternatively, other problems may be 

addressed, such as studying the differential power of species, defining sociological groups of closely related 

species, establishing a floristic classification of relevés, comparing two or several classifications of the 

relevés and the study of the distribution of species and groups of species in the set of the studied relevés. 

 

 The first application of factor analysis in phytosociology is due to GOODALL (1954). The contribution 

of factor analysis to the study of plant communities was developed by DAGNELIE (1960). This technique 

has gone out of fashion, under the roller of correspondence analysis. 

 

 We must distinguish analytical techniques from a single table, such as principal component analysis, 

correspondence analysis (see CHESSEL, DUFOUR & THIOULOUSE, 2004) and analyses of several tables 

(see DRAY, DUFOUR & CHESSEL, 2007). 

Principal component analysis (PCA) 
 

 Consider now that we have the observations relative to p variables and carried out on n individuals. 

These data are in the form of a matrix, Y, of dimension n x p. The p variables correspond to the species 

(coefficient of abundance-dominance, biomass for example) or factors of the environment. The initial 
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variables are replaced by the reduced centered variables. The matrix X'X then corresponds to the correlation 

matrix. In the phytosociological tables, the rows correspond to the species (variables) and the columns to the 

relevés (individuals). 

 

The non-centered principal component analysis simultaneously orders the sites and the species. The 

weight of sites and species in the analysis is proportional to their total abundance. This technique is not 

susceptible to distortion by rare species. Examples are given by EZCURRA (1987) and EZCURRA et al. 

(1987). 

 

 When species have a unimodal distribution along environmental gradients, PCA produces 

representations of the first two axes of the factorial analysis, that forms an arc or a horseshoe, which is 

considered a distortion by GAUCH (1982b ) inter alia. PCA, as an ordination, is considered to be the most 

effective when species present monotonous responses along environmental gradients. This way of 

interpreting the results shows all the difference that there can be between an ordination and an analysis of 

data that does not involve any element outside the data table. 

 The principal component analysis introduces complementary variables, which are not taken into account 

in the calculations (FOUCARD, 1982). For this purpose it is sufficient to calculate the covariances or 

correlations with the main components and to represent them in the basis of the main components already 

obtained. HUSSON et al. (2009) distinguish active variables, which are included in PCA calculations and 

additional or illustrative variables. 

 It is also possible to introduce complementary individuals. 

Correspondence analysis (CA) 
 

 The starting point of correspondence analysis is a two-input frequency table. The frequencies 

constitute the elements of a matrix Y, of dimensions n × p, n and p representing the numbers of modalities 

relating to the two criteria taken into consideration. The rows and columns of matrix Y are of the same nature, 

unlike the matrix of data for a principal component analysis, where rows correspond to variables and columns 

to individuals. Once again, one must repeat that CA is part of a set of statistical techniques whose propose is 

to approach the tables independently of any mathematical hypothesis. They should therefore not be used to 

answer hypotheses or to bring a set of data into a paradigm such as the indirect gradient. 

 

 However, this analysis is applicable to the standard relevé tables, with the rows corresponding to the 

species and the columns to the relevés. It is very often used with coefficients of abundance-dominance or 

presence data. It is not suitable for biomass or continuous variables of the environment at all. 
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 The matrix of frequencies (or presences or abundances-dominances) Y is first transformed into a matrix 

of relative frequencies, F, obtained by dividing each element of Y by the sum of all the elements : 

fij = yij / N 

( i = 1,…,n ; j = 1,…, p) 

This matrix F is, in turn, transformed into a matrix X by the following transformation: 

jijiijij fffffx .... /)( −= , 

fi. et f.j being the marginal relative frequencies of rows and columns : 


=

=
p

j

iji ff
1

.  


=

=
n

i

ijj ff
1

.
 

 In this transformation, rows and columns play a symmetric role. We also note that the deviations: 

jiij fff ..−  

 are in fact the deviations between the observed relative frequencies observed and the expected relative 

frequencies under the assumption of independence between the rows and the columns. On the other hand, 

except to the constant N1 , the quantities xij are equal to the square roots of the quantities calculated for 

each of the np cells of the contingency table and sum to obtain the value 
2

obs when carrying out the test 2  

of independence between rows and columns. 

 

 After calculating the eigenvalues and the eigenvectors, the representation of the line-points and that of 

the column-points in spaces with two or more dimensions are important but not unique tools of the 

interpretation of the starting data. In these graphs, the proximity of two line points or two column points 

reflects the similarity of the "profiles", that is to say, the conditional distributions, relative to these two lines 

or to the two columns. However, as with principal component analysis, it should be borne in mind that two 

points (rows or columns) may be close in a subspace (on an axis or on a factor plane) without being 

necessarily closed in the complete space, that is, the space of the set of factors. We cannot therefore conclude 

from the similarity of the profiles only if the corresponding points are well represented, that is to say if the 

sum of the square cosines for the subspace is sufficiently large. 

 

 In practice, line points and point-columns are first identified which have a strong contribution to the 

factors used for graphic representation and which, at the same time, have a satisfactory representation quality. 

For these points, one examines the projections on the axes and more particularly the sign of these projections, 

so as to highlight any conjunctions or oppositions (line points or column points with projections of the same 

sign or opposite signs). Examination of the initial data or, more precisely, the comparison of the profiles of 
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the rows and columns with the average profile of the rows and columns also makes it possible to verify these 

conjunctions or oppositions. If we use the algorithm of HILL (1973), the analysis is called "Reciprocal 

averaging (or RA)". 

 

 According to GAUCH (1982b) and many authors thereafter, CA proved superior to principal 

corresponding analysis analysis. CA presents, as PCA the problem of arc configuration but with PCA, the 

ends of the arc sometimes meet. When treating long gradients of vegetation, with high beta diversity, CA is 

generally superior. 

 

 Non-symmetric correspondence analysis (NSCA) (GIMARET-CARPENTIER et al., 1998, 

KROONENBERG & LOMBARDO, 1999) starts from the observation of how the data are collected in the 

field. Species occurrences are observed among relevés. The relevés (number, position, for example) are 

chosen by the observer, not the species. The result is a fundamental asymmetry that is explored by NSCA. 

The difference between CA and NSCA is precisely the metric. Species have a uniform weight equal to unity 

in NSCA whereas CA is based on the metric which implies a double "averaging" calculated from the marginal 

totals of the rows and columns of the tables. This latter technique is thus called dual. In NSCA, high 

importance is given to abundant species and the effect of rare species is severely limited. In a table of 

occurrences, therefore, a large number of rare taxa will not be a limiting factor. A very low weight 

automatically returns a taxon to the origin. 

 To clarify the difference between CA and NSCA : 

 In the data transformation, 

- For CA, one calculates : don1(I, J) = don(I, J) * sum / (hc(J) * hr(I)) – 1, 

- For NSCA, one calcultes : don1(I, J) = don(I, J) / hc(J) - hr(I) / sum. 

The covariance matrix is then calculated as follows : 

- for CA, y1(J1, J2) = y1(J1, J2) + don1(I, J1) * don1(I, J2) * hr(I) * Sqr(hc(J1) * hc(J2)) 

- for NSCA, y1(J1, J2) = y1(J1, J2) + don1(I, J1) * don1(I, J2) * Sqr(hc(J1) * hc(J2)). 

With don() : original data (i.e., presence of a species in a relevé), don1() : transformed data before 

calculation of the covariance matrix, sum : sum on all the lines and columns, hc() : sum on one 

column, hr() : sum on one line (or raw), y1() : covariance. 

The eigenvalues are then calculated from that covariance matrix. 

 

 Another variant of CA called "correspondence analysis of lines of data" was proposed by 

GREENACRE (2010). It starts from the observation that vegetation or wildlife relevés have the same area or 

volume and asks whether abundances should be transformed according to the total abundance of each relevé. 

This CA analyses non-relativized lines. 
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 Multiple correspondence analysis (MCA) (PALM, 1993) is a CA applied to complete disjunctive 

tables; the two-criteria contingency table is replaced by a multi-criteria table. The typical example is the 

analysis of a table with individuals having to answer at a set of multiple-choice questions. An example is 

provided by COQUILLARD & GUEUGNOT (1991); it is an ecological study of 27 relevés whose belonging 

to four syntaxons is known and characterized by 12 variables. Each variable is represented by two or more 

modalities (for example, the topographic situation is defined by four modalities: front of hill, summit of slope, 

middle of slope, bottom of slope). Such a technique, little used, offers interesting prospects when analyzing 

non-monotonic variables; species-related variables such as abundance-dominance could also be coded into 

categories. Applications are rare (FRIED et al., 2009). 

 The analysis called "fuzzy correspondence analysis" also associates several modalities with the 

variables (DOLÉDEC & CHEVENET, 1997). It is considered a form of MCA. It uses a "fuzzy coded" table 

with t species constituting the rows and m modalities constituting the columns. V is the number of variables. 

The variable 1 has m (1) modalities, the variable 2 has m (2) modalities, ..., and the variable v a m (v) 

modalities. 


=

=
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 If the affinity of a species for a variable is unknown, it is coded "0, 0, 0, 0". It is therefore implicitly 

replaced by the mean profile of the corresponding variable. The consequence is that a species with such a 
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value is not taken into account in the calculation of the weight of the column. The table P is then treated as a 

correspondence analysis. 

 

 ROBERTS (1986) showed that "fuzzy set ordination" is a general technique that includes techniques 

specific to ecologists such as direct gradient analysis (WHITTAKER, 1967), BRAY & CURTIS ordination 

(1957) as well as the ordination "environmental scalars" by LOUCKS (1962). Species responses are not 

limited to a precise mathematical function; they may be, for example, non-linear or discontinuous. Each axis 

of ordination is defined beforehand, so the basis of the interpretation is predetermined. The ecologist can 

therefore use the "fuzzy set ordination" to explicitly test hypotheses. Examples of "fuzzy set ordination" were 

given by BANYIKWA et al. (1990), FULTON (1996), BOYCE (1998) and FEOLI et al. (2003). 

Detrended correspondence analysis (DCA) 
 

This is a widely used variant of correspondence analysis (HILL & GAUCH Jr, 1980). It therefore 

treats species and relevés at the same time. This technique is supposed to correct the horseshoe effect, that is 

to say the arc or V, which appears classically when the points corresponding to the relevés or species are 

presented in the plane formed by the first two axes . DCA consists of flattening the "horseshoe". This is 

achieved by cutting the first axis into segments and setting the mean value on the second axis to zero in each 

segment. Another defect is also corrected, that is to say, the tendency to compress the extremities of the axes 

with respect to their environment; this is achieved by rescaling the axes so as to equalize as much as possible 

the variance within the segments of the values of the species along the axes of ordination. In this technique, 

eigenvalues can no longer be considered as explained proportions of the total variance. 

Principal coordinate analysis (PCoA ou NMS) 
 

 The principal coordinate analysis (PCoA or NMS) is a generalization of the analysis of the principal 

component analysis. It was proposed by GOWER (1966). Unlike the PCA which calculates the distance 

between points in a space (relevés or species) using the Euclidean distance, PCoA allows the use of other 

distance measurements that better reflect the difference between relevés, for example. The distance between 

two relevés may be the number of species present in one relevé or in the other but not in both (PIELOU, 

1977), or the coefficient of BRAY & CURTIS (1957). 

The constrained ordinations 
 

 Constrained ordination techniques seek to automatically detect patterns of species variation that can be 

explained by observed environmental variables. It is therefore an analysis dealing simultaneously with two 

tables of very different data, species and environmental variables. The resulting diagrams express not only 

the patterns of variation in the specific composition but also the links between species and environmental 
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variables (JONGMAN et al., 1987). As we shall see, the term "canonical analysis" frequently used is not 

correct and should no longer be used. 

 

 The "canonical" correspondence analysis or CCA (ter BRAAK, 1986, CHESSEL et al., 1987, McCUNE 

& MEFFORD, 1999) is unique among ordination methods in that the correspondence analysis of the main 

table (vegetation relevés) is subjected to the constraint of the mesological variables of a second table by 

means of a multiple regression. This means that the ordering of relevés and species is constrained by 

relationships with the environmental variables. CCA is appropriate in cases where the responses of the 

species to the mesological variables are unimodal and the corresponding mesological variables have been 

measured. This is a direct gradient analysis. Scoring scores are linear combinations of environmental 

parameters. 

 

 The "canonical" analysis of correspondence (CCA) is a method closely linked to correspondence 

analysis. Basically, the table of floristic relevés is considered to be part of the correspondence analysis. This 

is a combination of regression and correspondence analysis. These authors also use the expression "analysis 

of correspondence on instrumental variables" or AFCVI. CCA is calculated from the double-centered floristic 

table of the analysis of the correspondences and the centered and normalized mesological table and then 

transformed on an orthonormal basis. 

 

 The “canonical” correspondence analysis (ter BRAAK, 1986 and 1987) selects the linear combination 

of environmental variables that maximizes the dispersion of coordinates associated with species. In other 

words, CCA chooses the best weights (cj) for environmental variables. This gives the first axis of the analysis. 

The analysis uses the following linear regression equation: 

xi = c0 + c1 z1i + c2 z2i + ... + cqzqi   

in which 

 zji is the value of environmental variable j at site i, 

cj is the weight belonging to that variable, 

xi est is the value of the resulting compound environmental at site i. 

The second and further CCA axes also select linear combinations of environmental variables that 

maximize the dispersion of the species scores, but subject to the constraint of being uncorrelated with 

previous CCA axes. As many axes can be extracted as there are environmental variables.  

CCA is therefore a ‘restricted correspondence analysis’ in the sense that the site scores are restricted 

to be a linear combination of measured environmental variables. By incorporating the restriction in the two-

way weighted averaging algorithm of CA, we obtain an algorithm to CCA. It is therefore not a canonical 

analysis in the strict sense of the term. However, the CCA acronym may be conserved, considering the three 

letters as the initials of the three words "Constrained Correspondence Analysis". 
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 Species and sites are positioned as points in the CCA as in CA and interpreted in the same way; sites 

with high abundances of a given species tend to be close to this species. The environmental variables are 

represented by vectors and the points corresponding to the species must be projected on these axes. The 

"biplot scores" are the coordinates of the tops of the lines. The longer the line of a parameter of the 

environment, the narrower the relation of the vegetation with this parameter. The position of the points-

species relative to the lines of the parameters is used to interpret their relationship with this parameter. By 

lowering a perpendicular from a point-species to the line of the parameter, one has an idea of the degree of 

response of the species to this parameter. It can also be deduced whether the parameter is favorable (species 

on the same side as the point of the arrow) or unfavorable to the species (contrary situation). 

 

 Constraints become less intense as the number of environmental variables increases. The greater the 

number of environmental variables, the more the CCA tends to become a simple CA. CCA is therefore a 

direct gradient analysis, unlike the correspondence analysis which is often used as an indirect gradient 

analysis. 

 

 Redundancy analysis (RDA) is the "constrained" form of PCA (JONGMAN et al., 1987). RDA is 

chosen if the length of the gradient measured from a CA is less than 3 and the eigenvalues are higher than 

with CCA (CLARKE et al., 2005). The DCCA is the application of the CCA algorithm to the "detrended 

correspondence analysis". 

Multiple factor analysis 
  

 Multiple factor analysis (AFMULT) is a method of simultaneous analysis of K tables. The AFMULT 

is therefore a generalization of the techniques of coupling tables. It is due to ESCOFIER & PAGES (1984, 

1986, 1989).  

 We have K arrays having in common n individual-lines (figure 2), each corresponding to a group of 

column-variables. 

 

           p1                                      pj                                       pK          

 

                                                                                  

 

Figure 2. A set of K tables having n individuals in common. 

 

 

 Analyse 1 

 

Analyse j 

 

Analyse K 
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 These include, for instance, physico-chemical analyses of water samples taken at a number of sites 

along a river at different times of the year or for several years. They can also be tables with very different 

data such as a table of floristic relevés associated with a table of physiographic characteristics and a table of 

soil analyses; these three tables have in common the individuals (relevés) arranged in rows. 

 

 In order to standardize the role of the tables in the simultaneous analysis, the AFMULT consists in 

bringing to a common scale the inertias (or another parameter) projected on the first axis of the analysis of 

each table. 

 

 AFMULT, in order to standardize the role of the tables in the simultaneous analysis, consists of reducing 

to a common scale the inertia projected on the first axis of the analysis of each table. The originality of this 

technique is the introduction of a weighting of the variables, which at the origin is the first eigenvalue of each 

table of the set. 

 

  

Multiple factor analysis is built on the principal component analysis or correspondence analysis (both 

classical and non-symmetric). It requires, for instance, an ACP of the table formed by the combination of the 

K tables and an ACP for each of the separate tables. 

 

 CENTOFANTI et al. (1989) give an example with 10 physico-chemical parameters of water surface, 

measured in 10 stations at 12 dates in a reservoir lake. HAURY et al. (1998) studied the ecological 

determinism of phytocoenose distribution, taking the environmental variables into account; five groups of 

variables were used: 15 for physical mesology, 10 for geology, 3 for physico-chemistry of water, 10 for 

vegetation characteristics and 92 for macrophytes. The results of the first five axes have been exploited and 

clearly show the relationships between various environmental factors and floristic groups. DEVINEAU 

(2001) presents a joint analysis of four tables, respectively a floristic table with indices of importance of trees 

and shrubs, a floristic table of frequencies of "regenerations and sub-shrubs", a table relating to soil profiles 

and a final table with the chemical and textural characteristics of the upper horizon. CHUA et al. (2016) 

conducted one set of analysis using all the data to explore the factors that influence overall seedling 

recruitment and a second analysis on secondary forests to explore the importance of these factors within 

recovering forests. They used multiple factor analysis to examine the correlation among the seedling 

community, adult community, regeneration environment and distance to potential seed sources. 

 This technique, by its various possibilities, is one of the most promising of recent years. 

 The steps of the analysis are: 

- The calculation of the correlation matrix between the variables of the original table, and its eigenvalues; 
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- The calculation of the correlation matrices and the first eigenvalues of the sub-tables; 

- In the original table, each sub-table is weighted by the first eigenvalue corresponding; for each line, the 

original variables are divided by the square root of the first corresponding eigenvalue; 

- The correlation matrix of the weighted table is calculated, as well as its vectors and eigenvalues; the 

coordinates and relative contributions of the individuals are calculated as in a classical analysis, the 

coordinates of the species are obtained by multiplying the lines of the eigenvectors by the square root of the 

eigenvalues of the weighted table and the square root of the weighting parameter. 

 

 In this way, our results correspond to those produced by the Rcmdr software (chapter 13). 

 

 We adapted this technique to classical correspondence analysis and to non-symmetric correspondence 

analysis. For the CA and the ANSC, the sums are calculated on the rows and columns and the weighting by 

the square root of the first eigenvalue relates directly to the original variables. The sums and the grand total 

are subject to this weighting. The various stages of calculation are then carried out as in conventional 

analyzes. However, there is the problem of weighting the sub-tables. Let us take the example of principal 

component analysis: the first eigenvalue is, to a certain extent, a function of the trace of the matrix, which 

itself corresponds to the number of variables (in the precise case of a calculing a correlation matrix). A small 

array produces a smaller eigenvalue than a large one. Mixing sub-tables with a very different number of 

variables greatly favors sub-tables with a small number of variables. It is therefore not recommended to use 

this technique by mixing floristical data (often very numerous) and mesological, pedological, chemical, ... 

often fewer. A solution exists, however, by weighting with the quotient between the first eigenvalue and the 

trace of the correlation matrix, instead of weighting with the first eigenvalue itself; this avoids the pitfall of 

a weighting due solely to the size of the matrix. 

 

 In correspondence analysis, the trace of the matrix and therefore the eigenvalues, depend in part on the 

grand total of the data table. Take the example of presence table: if most of the cells in the table correspond 

to 1 (dense table) and therefore that few cells are empty, the trace of the matrix will be larger than if many 

cells are empty. The first eigenvalues are therefore larger when an table is rich in data. Thus, if we mix sub-

tables with very different data densities, the sparse sub-tables are crushed by the dense sub-tables. We thus 

had the idea of weighting the floristic sub-tables comprising only “0” and “1” by the proportion of cells 

occupied by “1” (which we will call density thereafter) and thus rebalance the weight of each sub-table. 

 

 For CA and ANSC, the sums are calculated on the rows and columns and the weighting by the square 

root of the adopted parameter relates directly to the original variables. The sums and the grand total are 

subject to this weighting. The various calculation steps are then carried out as in conventional analyzes. 
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Co-inertie analysis (MCoA) 

 

 The analysis of multiple co-inertia was explained mathematically by CHESSEL & HANAFI (1996). 

According to APONTE et al. (2011), MCoA is a multi-table multivariate analysis technique that allows the 

simultaneous analysis of several data tables. It maximizes the variance within each individual table and the 

correlation between the scores of each individual table (individual analysis) as well as the synthesis scores 

(analysis of the tables juxtaposed) so as to provide a reference structure. MCoA thus optimizes the covariance 

between several individual analyses and a reference analysis which can be seen as a common structure shared 

by the individual analyses. 

 

It is also possible to process two sets of data that have not been collected at the same sites, by adding 

a neighborhood matrix between the sites of the two sampling plans (spatial RLQ analysis, DOLÉDEC et al. 

1996, DRAY et al., 2002). The technique was also used by DRAY et al., 2003) which links ecological data 

tables. Two recent examples are given by JAMIL et al. (2013) and WESULS et al.  (2012). They explain the 

technique as follows: RLQ analysis links a matrix of environmental variables relevés (table R) to a matrix of 

species by functional traits (Table Q) using species coverages in the relevés (Table L ) as links. This is an 

extension of the co-inertia analysis. Before the RLQ analysis, the tables are subjected to separate multivariate 

analyses. Correspondence analysis was used for the species-relevés table (Table L). The environmental 

variables-relevés table (Table R) was analysed by a principal component analysis. For the species by 

functional traits table (Table Q), a principal component analysis, adapted to a mixture of quantitative and 

categorical data, was calculated. The AC relevés scores table L were used as row weights in the PCA of table 

R and the CA species scores of table L were used as row weights in the analysis in table Q. RLQ analysis is 

an extension of the co-inertia analysis that simultaneously takes into account the information contained in 

tables R, L and Q. There is also another form of analysis called partial RLQ. 

Other techniques 

  
 The techniques that follow are fundamentally different from those we have just presented, in that they 

do not use the calculation of eigenvalues and eigenvectors derived from a matrix of covariance or distances. 

Bray & Curtis ordination (Polar ordination) 
 

 Historically, a first important method is the polar ordination proposed by BRAY & CURTIS (1957, in 

COTTAM et al., 1973). Let a set of relevés to be ordered. Measurements of similarity are calculated for each 

relevé with all others. Two extreme relevés are defined either on the basis of the greatest dissimilarity with 

the rest of the set of relevés and between them or because they represent the extremes of an environmental 
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gradient. Similarity measurements are used to arrange all other relevés in a sequence along an axis, between 

the pair of extreme points. A second pair of extreme points, different from the first, is selected and all relevés 

are arranged along the axis between the second pair. The two axes determine the coordinates of the relevés 

in a plane, each relevé corresponding to a point on which various characteristics can be superimposed as 

variables of the environment. The relevés can still be ordered relative to a third axis and so on. Numerous 

variants of this technique have been proposed. An important description of the vegetation of the State of 

Wisconsin was carried out with the help of this technique (CURTIS, 1959). 

Non-metric multidimensional scaling, NMDS 
 

 This is an original technique, proposed by KRUSKAL (1964a and b). We use here the explanations 

provided by ORLÓCI & KENKEL (1985) and McCUNE & MEFFORD (1999). 

 

 Let us start with a table Y of relevés with p rows (species) and n relevés (columns). The objective is to 

provide a table X with n columns and t <= p lines, in which the relevés are placed in a different order, 

according to their resemblances (measured by a distance d), that order reflecting a vegetation gradient or the 

preponderant influence of one or another factor. The t axes are independent. The calculations begin with the 

calculation of a n x n distance matrix (d) computed from table Y. In this first table, the relevés (columns) are 

placed in the order defined by the observer. Another n x n distance matrix (D) is then calculated, based on 

the table X, containing n columns with coordinates attributed to the relevés and defined by the observer 

(random numbers or coordinates resulting from another ordination) and a small number of lines t also fixed 

by the observer (1, 2 or more, <= p). X is modified during iterative cycles. The objective is to make the 

elements of X less and less random so that the order of the elements of D approaches closer and closer to the 

order of the corresponding elements of d. The degree to which the objective is achieved is measured in terms 

of a stress coefficient s(D;d). If the value of the stress is too great, the iterations continue; the order of the 

elements of X is changed and a new table D is computed and then compared with d. When the stress is small 

enough or when no improvement can be made any more, the configuration of X is definitive. The elements 

of X are the coordinates of the n relevés on the t axes. ORLÓCI & KENKEL (1985) recommend choosing a 

random start configuration and not choosing a configuration based on another ordination. They use Euclidean 

distance. It is also possible to use the McCUNE & MEFFORD software (1999). 

 

 This particular technique calls for some remarks: 

- The first dimension in a two-dimensional space is not the same as the first dimension in a three-dimensional 

space or in a single space. For a given number of dimensions, the solution for a particular axis is unique. 

- The axis numbers are arbitrary, so that the percentage of variance associated with an axis does not 

necessarily form a descending series with the increasing number of axes. 
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- The appropriate number of axes should be determined by the final stress evolution as a function of the 

number of axes chosen. It is necessary to choose a number of axes beyond which stress reduction is small. 

 

 The solution is influenced by the initial order of the relevés in Table X. If one chooses the "random" 

option, several analyses provide different results. 

 

There are many variants of this technique (PRENTICE, 1977 and 1980, MINCHIN, 1987). The 

distance measurements can also be made using Euclidean distance, SØRENSEN, JACCARD or correlation 

coefficients. The "chord" distance we will use is as follows: 

δjk = [2(1-qjk)]
1/2 

in which 

  qjk =  yij.yik/[(yij)
2.(yik)

2]1/2   , i = 1, …, p. 

 ZIMOWSKI et al. (2014) give a very explicit example on how this technique is used. 

Use of techniques 
 

 We consulted 394 papers dealing with these techniques, from the beginning of their use until 2004. To 

quote them all would take up too much space but they can be found almost by consulting journals like Journal 

of Vegetation Science, Vegetatio, Journal of Ecology, Ecology, Ecological Monographs, Plant Ecology, Acta 

Oecologia, Phytocoenologia among the most represented. 

 

 Factor analysis sensu stricto was practically the only one used before 1965, it is no longer used. The 

principal component analysis, widely used between 1965 and 1974, is only used at present for vegetation 

data but is still used to synthesize monotonic data tables such as environmental variables. The analysis of 

BRAY & CURTIS, little used, was not met after 1984. The principal coordinate analysis, also little used, 

always appears sporadically. Multiple factor analysis is very rarely used. With a higher frequency, non-metric 

multidimensional analysis, in its many variants, remains used, as well as redundancy analysis. Most currently 

used are CA (RA included), CCA and DCA (DCCA has not made a real breakthrough). The two most widely 

used techniques are therefore very different. CCA is a direct gradient analysis technique whereas DCA and 

CA are indirect gradient analysis techniques. It is not certain that researchers always choose one or the other 

technique in full knowledge of their main properties. As ØKLAND (1996) explains, ordination sensu stricto. 

and constrained ordination follow different objectives. The persistence of CCA shows the need for coupling 

floristic tables and mesological tables. Too often, the choice of techniques is linked to the search for a gradient 

in species composition (VAN LOOY et al., 2003; NATTA et al., 2003) without any preliminary study on the 

dispersion of species. 
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We then consulted all the articles published in the Journal of Vegetation Science from its beginning 

in 1990 to the last volume of 2016 and constructed the following figure. Only the most frequently used 

techniques have been used. 

 

 

Figure 3. Annual use frequency of various techniques from 1990 to 2019. 

 

 CA, DCA and CCA are obviously the most frequently encountered techniques until 2010 and then their 

use frequencies decrease, specially since 2017. PCA is frequently chosen for tables of mesological parameters 

or functional traits, rather than for usual vegetation tables; the use of PCA for functional traits is largely the 

cause of its more frequent use in recent years. The increase in RDA follows that of PCA, which is logical 

since RDA is a constrained PCA. The frequency of NMDS clearly increases. The other techniques are less 
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popular. We deduce that the concept of gradient dominates research in vegetal ecology. When the gradient 

is temporal, the study becomes a succession study (AUSTIN, 1977, DEBUSSCHE et al., 1996). One may 

also wonder to what extent the choice of a technique is not influenced by the most known sets of software. 

PC-ORD (McCUNE & GRACE, 2002) and CANOCO (ter BRAAK & ŠMILAUER, 2002) are more and 

more supplanted by "R" programs. What is surprising is that non-symmetric correspondence analysis is 

totally ignored and that multiple factor analysis appears only recently (CHUA et al., 2016). 

 Very close conclusions have been drawn by VON WEHRDEN et al. (2009) in a study also covering 

the years 1990-2007, in a large number of journals, notably by the information provided by the "Institute of 

Scientific Information" or ISI. The use of multivariate analysis techniques in the field of ecology has been 

increasing since 1990. CCA is the most used technique, followed by CA / RA. DCA, NMDS, PCA and RDA 

have recently gained in importance. The authors also stressed the importance of available software. Over the 

entire period used, CANOCO remains the most used set. Since 1998, PC-ORD has gained prominence and 

more recently, R-based software is easily accessible. VON WEHRDEN et al. (2009) highlight the weakness 

of several techniques such as DCA especially on the parameters influencing detrending or for other 

techniques the importance of the standardization of the data of the table of statements or the choice of an 

index in the calculation of distance matrices. Some mathematical information useful for interpretation, such 

as eigenvalues, are not always used. The performances of the techniques are also always evaluated in terms 

of ordination, that is, in their ability to reveal indirect gradients. 

  

 In most studies, the percentages of inertia associated with the axes are given. They make it possible to 

evaluate the number of axes to be taken into consideration. When the cumulative percentages of the first two 

or three axes are important (without it being possible to set a standard), multivariate analysis is generally 

considered successful. 

 

 It should be noted that, in a very large majority of studies, only the scores of the relevés or of the species 

on the axes of the multivariate analysis are taken into account in the interpretation of the results. Interpretive 

aids are rarely used, probably because they are not provided by most available programs. Relative 

contributions of species or relevés are, however, valuable aids in organizing interpretation. They are taken 

into account in particular by BONIN & ROUX (1978), BONIN et al. (1983), BOUXIN (1986, 1987a & b, 

1991, 1995 & 1999). 

 

Multivariate analyses are also used as a technique to reduce the "background noise" of a table of 

relevés (GAUCH, 1982a). Indeed, the relevé tables contain interesting variations, interpretable in historical 

or environmental terms, as well as random, unusable variations. So this is a technique of data reduction. 
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 They are also used to study multi-species patterns in relevé or plots grids or simply when the relevés 

are placed in rows. In most studies, species, relevés or both sets are presented in a two-dimensional space 

(axes 1 and 2, 1 and 3, 2 and 3, etc.). In the study of a transect, ESTÈVE (1978) recommends that each axis 

be represented separately, taking into account the position of the relevés in space. The function relating the 

relevé scores on the considered axis (on the y-axis) and the position of the relevés (on the abscissa) highlights 

homogeneous zones, transition zones and zones with high floristic variability. The axes are placed in 

succession, parallel to each other. In any case, the ESTÈVE recommendation can be extended to any map of 

relevés. Examples are given by BACHACOU & CHESSEL (1979), BOUXIN (1983), BOUXIN & LE 

BOULENGÉ (1983), BOUXIN & GAUTIER (1979, 1982) and GAUTIER (1979). GALIANO (1983) uses 

the coordinates of relevés along the first axis of a RA as a basis for studying multispecific patterns. Examples 

of applications will be presented in this chapter as well as in the chapters on statistical analysis of vegetation 

tables. 

 

 Multivariate analyses were also used as the basis for important phyto-ecological or phytosociological 

studies. These include GUINOCHET (1973), BONIN & ROUX (1978), BONIN et al. (1983), MÄKIRINTA 

(1989). 

 

 Many authors do not analyse complete tables but eliminate rare species such as BARUCH (1984), 

BELSKY (1983), BRZEZIECKI (1987), BURKE (2001), COOPER (1984), HALL & SWAINE , HERMY 

& STIEPERAERE (1981) and NEWBERY (1991) among others. These simplifications are supposed to 

eliminate or reduce observed distortions, such as the horseshoe effect. Some authors do not hesitate to deal 

with very large tables (1117 records), which are then simplified by the elimination of rare and marginal 

species (BERGMEIER & DIMOPOULOS , 2001). 

 

 Multivariate analysis methods are also techniques of data reduction: they simply make it possible to 

transform a table with n rows (species) into a table with two, three or a few rows. This reduction in 

dimensionality is considered as one of the objectives of the analysis by DALE (1975) and AUSTIN (1976), 

insofar as it is associated with a gradient search. The simplified tables, whose redundancies have been 

eliminated, can also be used in classification algorithms, for example (BERTHET et al., 1976; BOUXIN, 

1978, 1983, 1986, 1987a, b, 1995 and 1999, BOUXIN & DEFLANDRE , 1988) or, as has been seen, as a 

basis for studying multispecies motifs. 

 

 The problem of the distortions that appear in the representation of transformed variables in a 2- or 3-

dimensional space, generated a lot of discussion. ESTÈVE (1978) clearly attaches great importance in the 

definition of the calculated distance between relevés and the method of applying the configuration on a plane 

rather than the linearity of the model. It is absurd to question the lack of linearity between the performance 
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of species and the factors of the environment, since these factors are not taken into account, in indirect 

ordination at least. In the interpretation, therefore, attention must be paid to the mutual distance between the 

relevés taken into account. Distortions are created by the difference between the specific richness of the 

relevés (ß diversity), but it is far from being the only cause. Diversity is another cause (DARGIE, 1986). 

DEL MORAL (1980) finds that PCA, RA or NMDS give very good results with low ß diversity, whereas the 

technique of BRAY & CURTIS (1957) gives bad results. 

 Opinions are, however, strongly divided; thus GAUCH & SCRUGGS (1979) consider that RA is 

sufficiently tolerant to a high ß diversity, at least when compared with PCA; RA is used to calculate this ß  

diversity [according to WHITTAKER & WOODWELL (1978), it is the measurement of the change in the 

species composition along an environmental gradient; it is calculated by the degree of decrease of the 

logarithm of the similarity between relevés as the separation increases along the gradient determined by the 

first axis of RA; it is expressed in "half-changes" in the composition of species]. OLSVIG (1979) presents 

different measures of this diversity. Other calculation techniques have been proposed by WILSON & 

MOHLER (1983) who insist that the "background noise" present in the relevé tables can obscure the 

ecological patterns. Examples and calculations are also given by ITOW (1991) and OKSANEN & TONTERI 

(1995). DEL MORAL & WATSON (1978) consider that rare species contribute strongly to distortions. 

LLOYD et al. (1994) express ideas similar to those of ESTÈVE (1978) when they declare prefering indirect 

ordination (DCA) to constrained ordination (CCA and DCCA) because they wish to estimate the vegetation 

independently of the environmental variables. 

 Another problem related to correspondence analysis is the GUTTMAN effect (ESTÈVE, 1978) which 

is the appearance of artificial factors functions of the first; when this effect is marked, it is sometimes useful 

to consider only factors 1 and 3. 

 

 Multivariate analysis methods are most often used from a descriptive point of view. Inference is rarely 

used. Recent techniques facilitate the transition to statistical inference: these are the randomization, bootstrap 

and Monte Carlo tests (MANLY, 1997). The randomization tests were applied by BOUXIN (1999) to the 

principal component analyses and the correspondence analyses; they relate to the relative contributions of 

axes, records and species; the permutations relate to each line independently (here the species); it is thus 

possible to determine, with a risk  = 0.05, the number of significant axes and the species or the relevés 

presenting significant relative contributions. The bootstrap technique is used by KNOX & PEET (1989) to 

retain the number of useful axes in a DCA and by PILLAR (1999) to determine the number of dimensions in 

the analysis of a sample of relevés. In a fuzzy set ordination, FULTON (1996) uses a Monte Carlo test to test 

the robustness of the set of data against the environmental preferences calculated for each species. Ter 

BRAAK (1987 and 1990) and ter BRAAK & ŠMILAUER (2002), in the canonical correspondence analysis, 

use the distribution obtained by randomly changing the environmental variables between the sites in order to 
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evaluate the statistical significance of the effects of environmental variables. ALLEN et al. (1991) use the 

boostrap technique to evaluate the relationship between altitude and the first axis of CCA. REED et al. (1993) 

use a Monte Carlo test to evaluate the significance of axes produced by DCA and DCCA. 

Several conclusions 

 

 Which technique to choose? GREIG-SMITH (1964) found that choosing a technique to use in a 

particular case was not easy to do. This depended on the type of data, the diversity of data gathered, and 

sometimes available software. The choice depended mainly on the objective sought, the type of information 

sought to be extracted from the relevé table. It was therefore difficult to give general recommendations. But 

the same author noted that, in cases where several techniques had been applied to the same set of data, they 

produced coherent results, which was encouraging. This finding has also been made recently by several 

authors, including HUEBNER & VANKAT (2003) for DCA, CCA and NMDS and SCHADE et al. (2003) 

with respect to DCA, PCA & NMDS. The robustness of the various techniques has been observed but the 

limits to this robustness are very poorly known (AUSTIN et al., 1994); these authors emphasize the 

importance of well knowing the shape of the response curve of species along environmental gradients. 

KARADŽIĆ & POPOVIĆ (1994) increase the performances of PCA, in the search for gradients, by double 

standardization of the relevé tables, bearing on both rows and columns; in this case PCA is even greater than 

CA. A good way to evaluate the quality of the representation of the results of a technique is to use several of 

them and to compare their respective contributions (ØKLAND, 1996). We must remember the lack of aids 

in the interpretation of several techniques. Only PCA, CA, NSCA and CCA (in the ADE-4 software) provide 

these aids. 

 

 We will try to answer these questions in the following chapters. 
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Annexe: calculation of eigenvalues and eigenvectors 

 

Used data 

 

 We present a simple example with three species, taken from the Tailfer5 table used in this chapter. 

Compared to this table, several empty relevés have been removed. 

 

Species/Relevés 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 19 23 24 25 26 27 28 29 Sum 

Carex pendula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 9 

Carex remota 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 12 

Deschampsia cespitosa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 18 

Sum 1 2 2 2 2 2 2 2 1 2 2 1 2 1 1 2 1 2 1 1 1 1 3 2 39 

 

 

Examples of principal component analysis 

Matrix of centered reduced data 

 

Relevés Carex pendula Carex remota Deschampsia cespitosa Sum 

1 -0.7746 -1 0.57735 -1.19725 

2 -0.7746 1 0.57735 0.80275 

3 -0.7746 1 0.57735 0.80275 

4 -0.7746 1 0.57735 0.80275 

5 -0.7746 1 0.57735 0.80275 

6 -0.7746 1 0.57735 0.80275 

8 -0.7746 1 0.57735 0.80275 

9 -0.7746 1 0.57735 0.80275 

10 -0.7746 -1 0.57735 -1.19725 

11 -0.7746 1 0.57735 0.80275 

12 -0.7746 1 0.57735 0.80275 

13 -0.7746 -1 0.57735 -1.19725 

14 -0.7746 1 0.57735 0.80275 

15 -0.7746 -1 0.57735 -1.19725 

16 1.290994 -1 -1.732051 -1.441057 

17 1.290994 -1 0.57735 0.868344 

19 -0.7746 1 -1.732051 -1.506651 

23 1.290994 -1 0.57735 0.868344 

24 1.290994 -1 -1.732051 -1.441057 

25 1.290994 -1 -1.732051 -1.441057 

26 1.290994 -1 -1.732051 -1.441057 

27 1.290994 -1 -1.732051 -1.441057 

28 1.290994 1 0.57735 2.868344 

29 1.290994 -1 0.57735 0.868344 

Sum 0 0 0 0 

Note: null totals are rounded off. 
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Correlation matrix 
 

  Care pendula Care remota Deschampsia cespitosa 

Care pendula 1   

Care remta -0.60247 1  

Deschampsia cespitosa -0.54660 0.38490 1 

 

 Eigenvalues 
 

1 = 2.027863 

2 = 0.6118351 

3 = 0.353785 

 

Eigenvectors 
 

  v1 v2 v3 

Carex pendula -0.62046 -0.07933 0.780219 

Carex remota 0.566674 0.642395 0.515952 

Deschampsia cespitosa 0.542136 -0.76226 0.353624 

 

 Example of calculation 
 

The three determinants 

 

1 - 2.027863 -0.60247 -0.5466 

-0.60247 1 - 2.027863 0.3849 

-0.5466 -0.3849 1 - 2.027863 

 

 

1 - 0.6118351 -0.60247 -0.5466 

-0.60247 1 - 0.6118351 0.3849 

-0.5466 -0.3849 1 - 0.6118351 

 

 

1 - 0.353785 -0.60247 -0.5466 

-0.60247 1 - 0.353785 0.3849 

-0.5466 -0.3849 1 - 0.353785 

 

are equal to zero. 

 

  

 The product of the matrix A and of the vector v1 is equal to the product of the vector v1 by the eigenvalue 

1 (involving rounding errors). 
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 Similarly, the two other products involving respectively the second and third eigenvectors and the 

second and third eigenvalues lead to the same equalities (involving rounding errors). 
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38490.0160247.0

54660.060247.01
 * 

















−

−

76226.0

642395.0

07933.0
 = 

















−

−

76226.0

642395.0

07933.0
* 0.6118351                          

 

















−

−

−−

138490.054660.0

38490.0160247.0

54660.060247.01
 * 

















353624.0

515952.0

780219.0
 = 

















353624.0

515952.0

780219.0
* 0.353785                          

 

For example, the Carex pendula coordinate on the first axis is equal to: 

-0.62046 * √2.027863 = -0.883554. 

 

The coordinates of the relevés on an axis are obtained by multiplying the elements of the columns of 

the table of the reduced centered data by the corresponding values of the eigenvectors of the axis in question. 

For example, the coordinate of the first relevé on the first axis is equal to: 

(-0.7746 * 0.62046) + (-1 * 0.566674) + (0.57735 * 0.42136) = 0.226936. 

 

Example of correspondence analysis 
 

As in this example, there are only three species for 24 relevés, the matrix is automatically permuted by 

the program and the columns correspond to the species. 

 

Weighted matrix 
 

 

Relevés Carex pendula Carex remota Deschampsia cespitosa 

cespitosa 

Sum 

1 -1 -1 1.166666 -0.833334 

2 -1 0.625 0.083333 

-0.291667 3 -1 0.625 0.083333 -0.291667 

4 -1 0.625 0.083333 -0.291667 

5 -1 0.625 0.083333 -0.291667 

6 -1 0.625 0.083333 -0.291667 

8 -1 0.625 0.083333 -0.291667 

9 -1 0.625 0.083333 -0.291667 

10 -1 -1 1.166666 -0.833334 

11 -1 0.625 0.083333 -0.291667 
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12 -1 0.625 0.083333 -0.291667 

13 -1 -1 1.166666 -0.833334 

14 -1 0.625 0.083333 -0.291667 

15 -1 -1 1.166666 -0.833334 

16 3.333333 -1 -1 1.333333 

17 1.166666 -1 0.083333 0.083333 

19 -1 2.25 -1 0.25 

23 1.166666 -1 0.083333 0.083333 

24 3.333333 -1 -1 1.333333 

25 3.333333 -1 -1 1.333333 

26 3.333333 -1 -1 1.333333 

27 3.333333 -1 -1 1.333333 

28 0.444444 0.083333 -0.27778 0.249993 

29 1.166666 -1 0.083333 0.083333 

Sum 5.611103 -3.416667 -0.527787 1.166651 

Note: totals are rounded off. 

Covariance matrix 
 

 Carex pendula Carex remota Deschampsia cespitosa 

Carex pendula 0.52849   

Carex remota -0.2344 0.220085  

Deschampsia cespitosa -0.18232 -0.01396 0.140313 

 

Eigenvalues 
 

1 = 0.698526 

2 = 0.190362 

 

Eigenvectors 
 

Carex pendula 1.804984 -0.27453 

Carex remota -0.75147 -1.29819 

Deschampsia cespitosa -0.40151 1.002723 

 

Example of calculation 
 

The two determinants 

 

0.52849 – 0.698526 -0.2344 -0.18232 

-0.2344 0.220085 – 0.698526 -0.01396 

-0.18232 -0.01396 0.140313-0.698526 

 

0.52849 – 0.190362 -0.2344 -0.18232 

-0.2344 0.220085 – 0.190362 -0.01396 

-0.18232 -0.01396 0.140313-0.190362 
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are equal to zero. 

 

The coordinates of the floristic variables are obtained by multiplying each eigenvector by the square 

root of the corresponding eigenvalue. 

 

For example, the Carex pendula coordinate on the first axis is equal to: 

1.804984 * √0.698526 = 1.508567. 

 

The coordinates for each relevé are obtained by summing the products of the scores of the species of 

the original table (here always equal to 1) by the corresponding values of the eigenvectors, all weighted by 

the marginal totals of each relevé. 

For example, the coordinate of relevé 1 is equal to -0.40151, as it is the only present species. For relevé 

2, we have (1 * (-0.75147) + 1 * (-0.40151)) / 2 or -0.57649. 

 

Example of non-symmetric correspondence analysis 

 

The calculations are done from the columns (here the relevés). 

 

Weighted matrix 
 

For presentation purposes, the matrix is permuted. 

 

 Carex remota Carex pendula Deschampsia cespitosa Somme 

R1 -0.6923077 -0.92307693 1.61538461 0 

R2 -0.6923077 0.57692307 0.11538461 0 

R3 -0.6923077 0.57692307 0.11538461 0 

R4 -0.6923077 0.57692307 0.11538461 0 

R5 -0.6923077 0.57692307 0.11538461 0 

R6 -0.6923077 0.57692307 0.11538461 0 

R8 -0.6923077 0.57692307 0.11538461 0 

R9 -0.6923077 0.57692307 0.11538461 0 

R10 -0.6923077 -0.92307693 1.61538461 0 

R11 -0.6923077 0.57692307 0.11538461 0 

R12 -0.6923077 0.57692307 0.11538461 0 

R13 -0.6923077 -0.92307693 1.61538461 0 

R14 -0.6923077 0.57692307 0.11538461 0 

R15 -0.6923077 -0.92307693 1.61538461 0 

R16 2.3076923 -0.92307693 -1.38461539 0 
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R17 0.8076923 -0.92307693 0.11538461 0 

R19 -0.6923077 2.07692307 -1.38461539 0 

R23 0.8076923 -0.92307693 0.11538461 0 

R24 2.3076923 -0.92307693 -1.38461539 0 

R25 2.3076923 -0.92307693 -1.38461539 0 

R26 2.3076923 -0.92307693 -1.38461539 0 

R27 2.3076923 -0.92307693 -1.38461539 0 

R28 0.3076923 0.07692307 -0.38461539 0 

R29 0.8076923 -0.92307693 0.11538461 0 

 

 

Note: null totals are rounded off. 

 

Eigenvalues 

 

1 = 0.548992 

2 = 0.214318 

 

Eigenvectors 

 

R1 -1.006226e-01  3.622473e-01  

R2 -1.509014e-01 -8.664303e-02   

R3 -1.509014e-01 -8.664303e-02 

R4 -1.509014e-01 -8.664303e-02 

R5 -1.509014e-01 -8.664303e-02 

R6 -1.509014e-01 -8.664303e-02 

R8 -1.509014e-01 -8.664303e-02 

R9 -1.509014e-01 -8.664303e-02  

R10 -1.006226e-01  3.622473e-01 

R11 -1.509014e-01 -8.664303e-02 

R12 -1.509014e-01 -8.664303e-02 

R13 -1.006226e-01  3.622473e-01 

R14 -1.509014e-01 -8.664303e-02 

R15 -1.006226e-01  3.622473e-01  

R16  3.516240e-01 -7.812254e-02 

R17  1.774848e-01  2.009065e-01  

R19 -1.127841e-01 -4.847791e-01 

R23 1.774848e-01  2.009065e-01 

R24  3.516240e-01 -7.812254e-02 

R25  3.516240e-01 -7.812254e-02 
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R26  3.516240e-01 -7.812254e-02  

R27  3.516240e-01 -7.812254e-02 

R28  7.979980e-02 -1.158478e-01 

R29  1.774848e-01  2.009065e-01 

 

The calculation of the determinants is not presented here because it is too long. 

  

The coordinates of the relevés are obtained by multiplying the value of the eigenvector on the 

corresponding axis, divided by the sum on the column of the relevé, all multiplied by the total sum of the 

table. 

 

For example, the coordinate of relevé 1 on the first axis is equal to: 

-0.1006226/√1*√39 = -0.6283878. 

 

The coordinates for each species are obtained as indicated on the following line: 

cosp=cosp + don[i,j]*V[j, b]/sqrt(hc[j]*sqrt(nbrsp/(Lamb[b]*somme)). 

 

We first calculate the constant sqrt (nbrsp / (Lamb [b] * sum)): 

For the first axis, we have: 0.374321968 

 

For instance, the coordinate of Carex pendula (species present in relevés 16, 17 and 23 to 29) on axis 

1 is equal to: 

 

 

For R16: 0.351624 * 0.3743219684 (for hc = 1) 

For R17: 0.1744848 / √2 * 0.3743219684 (for hc = 2) 

For R23: 0.1774848 / √2 * 0.3743219684 (for hc = 2) 

For R24: 0.351624 * 0.3743219684 (for hc = 1) 

For R25: 0.351624 * 0.3743219684 (for hc = 1) 

For R26: 0.351624 * 0.3743219684 (for hc = 1) 

For R27: 0.351624 * 0.3743219684 (for hc = 1) 

For R28: 0.0797998 / √3 * 0.3743219684 (for hc = 3) 

For R29: 0.1744848 / √2 * 0.3743219684 (for hc = 2) 

 

which is 0.816253 

 

 

 

 

 

 


